Tag Archives: science

Scientists Gather in Boston to Discuss Research and Battle Anti-Science Political Agenda

(cover photo above: Pluto surface detail from New Horizons space probe, 2016)

By Mark Marchand

BOSTON — In the city that helped launch the great democracy experiment known as America, scientists from around the world gathered last month to discuss and share their latest research — and to draw battle lines against the ideological, anti-science platform of the new administration in Washington.

The scientific community here and abroad faces a Republican-led Congress and White House that, among many anti-science initiatives, seeds doubt against the lifesaving success of vaccines and denies the science behind climate change. As they gathered at the annual meeting of the American Association for the Advancement of Science, they issued an urgent warning: basic science matters. Leadership of the international organization also called upon its members to advocate publicly for the importance of science in our everyday lives.

In her opening address, AAAS President Barbara Schaal left no doubt about the need to counter a movement that threatens to set back centuries of advancements pioneered by scientists from Isaac Newton to Albert Einstein.

“The case for science must be made again and again so that government understands the essential, critical role science plays in our lives,” said Schaal, also dean of the faculty of arts and sciences at Washington University in St. Louis.

“Sadly, in the U.S. over the last 10 years, there’s a feeling of concern that the entire scientific enterprise is under threat, that our position in the world is eroding, and that we’re marginalized,” she added. “Our concern is that science is being discounted as just another policy system. We’re concerned with intensifying hostility toward science in many parts of globe. We need the entire science community to have a clear voice and deliver a message for science.”

Schaal said she is particularly concerned about lack of support for what she calls “basic science.” That’s more fundamental science conducted without specific applications or products in mind. The results of these endeavors form the foundation for eventual breakthroughs that benefit all of us — but they are misunderstood because it often takes decades for that type of research to pay off.

I had the opportunity to report on the four-day meeting for the newspaper where I began my career: The Springfield Republican, known as The Springfield Daily News when I worked there from 1981-83. In my first story, I summarized Dr. Schaal’s speech. I know most scientists resist the urge to leave the realm of evidence-based science discuss politics, so I was impressed with Schaal’s strong words — some of which even targeted the Oval Office occupant.

Reporting on the meeting

AAAS’ annual conference, the 183rd meeting for the group, featured hundreds of sessions during which scientists presented some of their latest work. I wrote about three of them for the Springfield newspaper.

The first story involved a West Virginia University professor leading an effort to develop a portable approach to positron emission tomography, also known as  PET scans. Today, PET scanners are large, immobile devices in which patients must sit or lie down. But scientists like Julie Brefczynski-Lewis see the need to study brain processes while a patient is performing an activity, like walking. This could pave the way for better understanding of the brain and possibly unlock secrets to cures for Parkinson’s disease and other maladies.

AAAS PET scan

West Virginia University’s Julie Brefczynski-Lewis and a mockup of her portable PET scanner

Other scientists are working to transform basic components of smartphones, such as the microphone, into portable diagnostic devices. In the future, asthma or chronic obstructive pulmonary disease patients could simply blow into the speaker and obtain instant feedback about their breathing. If Professor Shwetak Patel and his colleagues at the University of Washington have their way, our smartphones could help us detect a range of illnesses or track existing ones.

Because I’ve always been  fascinated with the science of space travel, one of my favorite sessions and stories I wrote involved legendary planetary scientist Alan Stern and his work on the multi-year New Horizons space probe mission to Pluto. Stern is one of the leading space scientists of our era, and he’s articulate. No wonder Time Magazine named him one of the 100 most influential people of 2016.

That’s also why I couldn’t resist having a photo taken with him after his talk:

Mark and Stern

At the beginning of his presentation, Stern showed one of the best images of Pluto in existence before New Horizons was launched in 2006. Taken from telescopes on Earth, it was not a very sharp picture:

Stern 2 -- with only previous, blurry image of Pluto

And then New Horizons started sending back gems like this last year, as well as the cover photo above:

Pluto from New Horizons

New Horizons’ work is not done. After passing Pluto, the tiny atomic-fueled probe is continuing on to examine other objects in the outer edge of our Solar System, also known as the Kuiper Belt.

There was a lot more science presented at the AAAS meeting, and I did write about a few more. I’ll share them on my blog in the near future.

But I left there feeling the scientific community has awakened to the need to better express the value and importance of their work — in a world that has become more polarized and often dismissive of evidence-based science.

 

 

 

 

 

 

 

 

Climate Change: Avoiding the ‘Natural Variations’ Pitfall

Waterfront Property: Buy Low, Sell High?

 

By Mark Marchand

 

“Everybody complains about the weather, but nobody does anything about it.”

For over a century, this comment has served as the standard retort when a friend or colleague laments hot and humid weather or complains about a massive snow storm. But when University at Albany Interim President James R. Stellar uses it to talk about work at UAlbany’s  Department of Atmospheric and Environmental Studies (DAES), he’s not grumbling. He uses it as a setup line before he talks about what he, his colleagues, and many others in academia are actually doing about the weather as the world wrestles with persistent climate change caused by humans.

Christopher Thorncroft, a UAlbany professor and DAES chair, is an ardent advocate for steering away from the political and news media musings that often cast climate change as some sort of “50-50” proposition that casually, and inaccurately, describes consensus on the topic. The actual worldwide consensus among scientists and experts, he says,  is 97 percent believe and understand that climate change is real, it’s caused by us, and we need to do something now.

The challenge, he said at a recent UAlbany conference, lies in understanding why human actions are causing the relentless warming of our planet. Next is helping the public understand what is happening — hopefully leading to greater adoption of efforts to, for example, reduce the emission of greenhouse gasses by burning fewer oil-based fuels.

What often gets in the way, Thorncroft says, are short-term variations of colder weather that embolden climate-change naysayers. The key, he says, is generating awareness and understanding of those variations, how they have been occurring for centuries, and how they will continue despite the persistent, longer-term trend of warmer temperatures.

The Nov. 10 presentations by Thorncroft and two of his UAlbany colleagues — Assistant Professor Andrea Lang and Associate Professor Paul Roundy — focused on three areas that help us understand natural events that are often misinterpreted as reversing global warming.

Natural Variations (or, one cold, snowy winter doesn’t mean climate change isn’t real)

Natural occurrences of cold weather that cause some to doubt the overall trend of warming temperatures hit home for me the day my wife and I stood on the deck of a cruise ship watching Marjerie Glacier calve into the chilly waters of Alaska’s pristine Glacier Bay. A National Park expert speaking over the ship’s PA system described how this particular glacier had been damaged by lower snowfalls and warmer temps. Instead of one long sheet of slowly moving ice, he said, it was now a series of connected, smaller glaciers. Many other glaciers, he also said, were much smaller and struggling to remain frozen. Yet a cranky,  elderly gentleman standing next to me missed the point. If Al Gore were here, he said as he gaped at the massive ice wall, he’d take a shard of ice and insert it somewhere in Al Gore’s backside, proving that once and for all the global warming brought on by climate change was not an inconvenient truth. That man is not alone in a world full of climate-change deniers.

Thorncroft builds his conclusions on evidence-based practices. The year 2015 finished with the warmest temperatures ever recorded. In fact, he told the large crowd, the top 10 warmest years since the 1880s have been the last 10 years — with the exception of 1998.

1998 and some other exceptions to the warming trend underscore the natural variability in the results we see. But they don’t deter from the alarming, overall trend of spiking temps caused by rising levels of the greenhouse gas carbon dioxide — which has occurred in synch with the rising temps.

The chart below, from our friends at NASA, helps illustrate the point. The dark line from left to right tracks deviations from average global temps over five-year periods. The “empty” circles above and below the line are shorter, annual mean temp recordings. Thus, you can see the variations Thorncroft mentioned and the general, overall spike upward.

globaltemp

Thorncroft and other scientists are always asked what causes these variations. Among the answers, he says, are naturally occurring phenomena like massive volcanic eruptions. Take Mount Pinatubo in the Philippines. When its cataclysmic eruption happened in 1991, tons of material were spewed into the atmosphere. Some of the ash reached as high as 22 miles and was carried over a wide area by high-level winds. The subsequent blocking of solar radiation, he explains, temporarily cooled areas of the planet, leading to short-term halts or even reductions in climbing global temps.

Here’s basically the same chart as before, but Thorncroft has added when the natural variations occurred, and why (More on El Nino in a bit.).

global-temps-chart

 

In  addition to natural variations and overall warming temps, what worries Thorncroft is the increasing intensity of routine weather events such as rainstorms. Since 1958, he says, scientists have recorded a 74 percent increase in “intense rainfall” activity. Many of the storms we’re witnessing now are more extreme because of higher temps. He likens the situation to baseball players who use steroids. The storm systems are stronger and last longer because they are fueled by artificial human actions.

“We have to understand that this is what’s happening — and we have to be prepared to deal with these extreme weather events,” he said near the end of his talk.

If the overall trend persists, Thorncroft concludes, the temperatures and overall climate in New York will become more like Georgia, and potentially even warmer.

El Nino (or, it’s been around since the dinosaurs)

Put simply, Professor Roundy says, El Nino is the periodic warming of equatorial and Pacific Ocean waters, which — when combined with the Earth’s rotation — disrupts the normal flow of the atmosphere. The result is the transfer of heat from ocean waters into the atmosphere, blowing more warm Pacific air into the western United States and beyond, leading to warmer temps.

The winter of 2015-16, he suggests, was  milder (featuring 70 degrees here last Christmas Eve) due to El Nino, reversing the trend we experienced during the long, cold, snowy winter of 2014-15. He and other scientists are already seeing evidence of colder Pacific water emerging, so they expect this coming winter here will be colder, but nowhere near as bad as two winters ago.

This pattern — or oscillation — of warming and cooling ocean waters (known as La Nina), Roundy says, has been around since dinosaurs roamed the globe. Yet every time we experience a harsh, cold winter, many people think global warming has stopped. No, he explains, it’s just the normal ebb and flow of ocean temps that naturally disrupt normal weather patterns.

The Polar Vortex (It’s not new; even Al Roker says so)

As the harsh winter of 2014-15 battered the Northeast, many of us began hearing about a new weather phenomenon called the polar vortex. It was, we thought, something novel that directly caused our terrible winter. We were half right.

According to Professor Lang, the term polar vortex term has been used by meteorologists for over a half century. Her conference presentation even included a 2014 tweet from NBC weatherman Al Roker, explaining that the National Weather Service has used the phrase as far back as 1959. He was responding to accusations that the news media had created the term to add pizzazz to explanations about and reporting on the winter of 2014-15.

What we really need to be concerned about, she says, is how changes in the vortex can alter our normal weather patterns. The polar vortex is a naturally occurring, large-scale circulation of air above and around the North Pole and surrounding region. It generally forms during the winter as the axis of the Earth tilts the northern hemisphere (us) away from the sun. This tilt causes generally cooler temps (otherwise known as winter) because solar radiation passes through much more of the atmosphere before it reaches the ground. Changes in the strength of the vortex can affect our climate.

Generally speaking, when polar vortex winds are strong, they help keep the colder air over the pole. Weaker polar vortex winds (or a “wavier” pattern) allow “dips” in the circulatory pattern, resulting in the spread of colder air south of the north pole. This is, she explains, what happened two winters ago when a weaker polar vortex allowed more colder air than normal to escape south. In 2015 to 2016, she adds, the warmer weather was aided by a stronger vortex that helped keep colder air up north.

One chart from Lang’s presentation shows us how a “wavier” polar vortex pattern (on the right) allows that chillier arctic air to temporarily move south.

polar-vortex

 

By tracking changes in the strength of polar vortex winds, she adds, scientists and meteorologists can make better projections about winter weather up to 90 days in the future. What bears further study  are the reasons for the year-to-year variations in strong vs. weak polar vortex winds.

The point, she and her colleagues emphasize, is that El Nino/La Nina, polar vortex changes, and natural events like volcanic explosions have existed for a long time. They will always cause variations in weather — despite and during the overall, relentless elevation of temps by human-caused increases in atmospheric carbon dioxide.

Where do we go from here?

The evidence supporting climate change is stark. According to NASA, sea levels (from melting polar ice sheets and glaciers) are close to seven inches higher today than they were last century. Global temps are higher. The level of greenhouse gas carbon dioxide in the atmosphere has crossed the critical 400 parts per million threshold for the first time ever. Oceans are warmer. The overall snow cover across the planet has decreased. There are many other factors that support the conclusions of over 97 percent of scientists.

And the answers seem simple, but they are of course politically and economically unpopular: Burn fewer fuels based on hydrocarbons, expand the use of alternate energy sources such as wind and solar, and simply use less energy. All help reduce the emission of more carbon dioxide into the atmosphere. Another solution involves fighting mass-scale deforestation. As  we know from high school science, the process of photosynthesis has plants giving off oxygen as they soak up carbon dioxide. Fewer trees in our forests means a smaller “carbon sink” that can help remove some carbon dioxide from the atmosphere.

These are physical solutions that require some sacrifice. As a lifelong student of communication, I think another key factor is awareness and understanding. Great conferences (like the Nov. 10 event I attended at UAlbany, jointly sponsored by UAlbany and the Nelson A. Rockefeller Institute of Government) are important means by which more of our population can gain greater understanding of what is happening. The result, hopefully, is dragging the climate change discussion further away from the political arena and more into a world where acceptance of environmental issues becomes as common and important as taking care of one’s health.

Otherwise, as my attempt at humor in my blog headline suggests, owners of waterfront property who bought their homes during times of normal sea levels may face selling them — for a lot less — as sea levels rise.

 

 

(Editor’s note: there was more in the Nov. 10 conference from the National Weather Service – NOAA – itself. More on that in a future post)

 

 

 

 

 

 

 

Science: Ruminating on “Particles”

 

The 21st Century Particle Principle

By Mark Marchand

I’m not much of a fan of car racing, but demolition derbies amuse me. The intent of these events is straightforward: Keep smashing cars into one another and see what happens. The lone survivor steers his or her car around the arena at the end, usually with parts of the body hanging off and smoke and steam billowing from both ends.

I was thinking of those derbies recently as I watched a PBS documentary about the launch of experiments at the Large Hadron Collider (LHC) straddling the France-Switzerland border. Built and operated by CERN (The European Organization for Experimental Research), the 17-mile underground tunnel and associated equipment is generally accepted as one of the most complex experimental facilities ever built by man. The scientists call it a particle accelerator, or collider. But at its core the mission is simple (sort of like the demolition derbies): Smash stuff together and see what happens.

Since one of the theories behind creating this huge machine was recreating the conditions that existed at the time of the Big Bang, I was amused by stories that circulated as the LHC neared opening in 2008. Some bloggers and journalists suggested that scientists there could accidentally create a black hole, causing all of us to be swallowed up into some infinite corner of the universe. I was relieved when that didn’t happen.

The work that takes place at the LHC is a serious matter. I was delighted to watch usually staid LHC scientists on the PBS show smile broadly as they talked about their work, often using their hands to show the types of reactions that might result from their work. They were breathless and, usually, smiling and laughing. They described in complex terms what they hoped to see as a result of their experiments. Some were nervous, admitting they were not quite sure what the experiments would reveal — which is, I guess, expected when one conducts experiments at this level. If we knew the answer, we wouldn’t need the experiment.

Ever since I took a high school physics class, I’ve been fascinated with the particles that make up everything around us, and, even ourselves. All forms of matter, I learned, are made up of these fascinating, microscopic particles called atoms, which link together to form molecules, which then make up everything that’s solid, liquid, or gaseous. What piqued my curiosity was how these tiny atoms — comprised of even smaller protons and neutrons in a nucleus surrounded by orbiting electrons — could form materials so solid that I could smash a hammer against, say, a metal wall and the tool would just bounce off. Why, I questioned, wouldn’t the hammer sink into that swirling collection of atoms that were orbiting and connecting out of the range of normal eyesight?

The answer is complex, but the easiest way to describe it is that the different atoms “share” some of their electrons, forming a range of “bonds” between atoms and molecules — bonds that in some cases are so strong (like those in a diamond) literally nothing can tear them apart. Others, like the bonds between atoms and molecules in tissue paper, are not so strong.

Once I understood how that worked, I continued to study particles through college, mostly in chemistry classes. I grew to love organic chemistry, which involved all carbon-based matter — otherwise known as the foundation for living things on Earth. I was captivated by the story of how 19th-century German scientist Friedrich August Kekulé envisioned the so-called “ring” structure common to many molecular compounds formed by bonds between carbon atoms. The vision came to him, he says, during a daydream as he thought about a snake circling around and attempting to swallow its own tail. That’s heavy stuff, and it’s true.

Throughout my studies, I continued to base my understanding of physical matter on the fundamental structure of the atom, as first suggested by Danish physicist Niels Bohr. While the model he developed in the early 20th century has been tweaked over time, the essential components of an atom have remained the same: a nucleus of protons and neutrons, and electrons weaving and bobbing around the core.

It was sometime after I finished college and during my early career as a journalist that my safe, sound image of that most fundamental particle, the atom, was shattered. It seems there are more sub-atomic particles responsible for how matter forms and behaves. It was hard for me to accept, but there was an entirely new atomic underworld made up of particles known as  quarks, neutrinos, leptons, bosons, gluons, and more. Some are easy to find while others only exist for a short time or can only be found using the most extreme, complex scientific exploration.

And thus (you were hoping I’d get back here, right?) we come all the way back to our brand new LHC over in Europe. The mission of this multifarious machine is to find and study new subatomic particles, helping us better understand the matter around us and why it does what it does. And perhaps we’ll learn new ways to do innovative things with matter. World-changing discoveries ranging from new materials in construction and transportation to new medicines await.

After years of research during the 20th century, scientists found the only way to unearth these new particles was to take apart the atom. You’ve heard of “splitting the atom” as part of the process to get to atomic explosions, right? It turns out that breaking those bonds releases an enormous amount of energy, hence the resulting blasts. The work of colliders takes things a lot further than the lower-tech chain reactions that spark nuclear detonations, or are used to produce energy in nuclear plants.

The LHC works like this: Scientists put together two high-energy beams of protons and shoot them in opposite directions through the LHC tunnels, on a collision course. The dominant force that pushes these beams along comes from huge magnets that constantly accelerate the particles. Think about the force you feel when you hold opposing ends of two magnets together, and multiply that by a factor of thousands. These magnets, powered by high-voltage electricity, get so hot they have to be super-cooled to keep working and prevent melting. Some scientists suggest the low magnet temperatures rival that of the cold in outer space. And, as I noted earlier, to achieve the best collision possible, the particle beams are pushed along at nearly the speed of light.

Once the particles smash together, a set of four different and very sensitive equipment arrays try to detect the different sub-atomic particles and forces that might emerge. These sensors gather so much data it can take weeks or months to determine what just happened.

It was after one of the first real experiments at LHC in 2012 that we heard of the initially tentative and later confirmed discovery of the so-called “God particle,” also known as the Higgs boson. It’s existence was suggested a half century ago by British physicist Peter Higgs and several others. But without a machine like the LHC, they couldn’t prove it — until now. This unstable particle will eventually help us unlock more of the mysteries around why matter behaves the way it does.

There’s much more work to be done, and discoveries to be made, at LHC. It’s been shut down a few times already for re-tooling and repairs, but we’ve only scraped the surface, I suspect. Last month, scientists turned the LHC back on and began circulating the first new protons beams in over a year.

But sub-atomic particles are not the only key to better understanding our world. There’s the relatively new topics of dark matter, and dark energy — which experimental physicists now suggest make up a large percentage of the mass in the universe. The race to find them and prove it is on…but more on that in the future.